Beam Diagnostics and their Control Systems

V.Chohan **CERN**

- · Definitions
- **Brief outline of Accelerator Operation**
- Controls in general, higher level issues
- Control of certain specific diagnostic devices
	- BCT's, BPM's, Scintillator Screens, etc
	- switches and commercial devices (GPIB) etc
- Diagnostics in the Control Room
- · Diagnostics from machine physics point of view
- controls : current trends for diagnostics

CAT-CAS Course on Accelerator Systems Indore, India, 7-16 November, 1993

Definitions for beam diagnostics & control for this talk:

- · beam & beam related measurements via specific hardware devices built for that purpose
- Ensemble of diagnostic systems used in higher level application programs
	- Application Programs defined as higher level tasks which utilise all base-level supervisory & on/off controls and diag. devices to manipulate beams
- . use of commercial devices via the control system in conjunction with beam measurement devices (e.g., spectrum analysers, fast digital 'scopes or equivalent, image freezers, all connected to appropriate beam measurement sources, etc..) or for troubleshooting, timing surveillance etc

Accelerator operation: a brief interlude

- Concerns a wide spectrum of operating conditions and uses and beam diagnostics is **intimately linked } during &** after commissioning and normal operation. The activities include:
	- -Start-up (or shutdown)
	- Setting up of the accelerator (modes & adjustment)
	- machine experiment and development
	- routine operation/beam production
	- -trouble-shooting/fault-repair
- Operation implies manipulation of related beams and processes/situations **USING** diagnostic devices and BEAM is the final criterion for all actions

Controls issues: general

• ANALYSES OF REQUIREMENTS

- for all base-line equipment like power converters, RF, vacuum equipment and base-level diagnostics devices like scintillator screens, position pickups, beam current transformers etc, needed VITALLY to commission the accelerator

• Uniformisation & firm policy

- use the analyses & results to come to a standardisation philosophy with say a minimum number of interfaces and module types to be used (e.g., PS Division in late '70's) for all control needs, hence reduce the hardware & software 'proliferation' or variety overheads
- HENCE, Beam Diagnostics devices follow & use similar interfaces & modules where possible (H/W & S/W)

MINIMUM No. OF MQULES + "Commercial"

G64 and FBUS interfacing has been used for control of main magnet power supplies, beam position monitors, magnet interlocks, corrector magnet power supplies, and injection/extraction elements. Other significant subsystems that include G64 crates are the system to distribute the slow timing pulses, the video cross point switch, and the video multiplexors for fluorescent screen monitors. The rest of devices is directly interfaced to the VME systems; either by asynchronous serial lines or digital I/Os.

As a result of an early taken policy, to stick to industry standards, only a few boards had to be designed by the **ESRF** Digital Electronics team:

- · video multiplexor¹¹ (VME)
- \bullet delay unit¹² (VME)
- ADC with on-board memory (G64)
- FBUS master (VME and PC/ATbus)
- FBUS slave (G64)
- \bullet clock divider¹³

Unavoidably some other dedicated electronics had to be designed to adapt some exotic devices to the standards chosen.

Table 1 gives an overview of interfacing.

Some Software implications:

- Few standard hardware modules imply few low-level software interface modules
- Hiding of equipment details in software through so-called software data modules (SPS:1973) or Equipment Modules(PS:1979, revamped 1987 and 1992 with new architectures)
- · availability of interpreters for hardware tests as well as programming by non-software experts(machine physicists, operators etc.)

Webst

Example of equipment layer architecture

 $\overline{\mathcal{M}}$ 2-layer Modellewrers
1951 -

The proposed Architecture

Workstations as consoles

Concept of standard & easy access procedures: Equipment **Modules**

The modules can be thought of as giving the operator the same facilities for doing remotely those things he could do locally or directly like turning dials or looking at a meter, etc....

Beam Current Transformer Control panel.

What does easy software access mean?

- Simple access from high level for single values OR Array of values
- · details of scaling factors, calibration, etc. hidden away so answer directly in engineering units

Single calls: {example of power converters}

POW(N, AQN, LN, C)

N=eq no; AQN=property, LN=ppm line, C= completion error code

Array Call:

APOW(VA, FL, EA, PROP, LN,CA)

VA=value array, FL=read/write flag,

EA=array of power supply nos., PROPerty, LN=PPM line, CA=completion err. code array

What is an EM software wise?

The PS Division at CERN is probably the unique facility in the world for the diversity of accelerators under one roof ranging from electron/positron source linacs to hadron linacs, booster and main synchrotron, antiproton storage rings, etc. This talk will attempt to show examples of the most common beam diagnostic devices in the PS Complex and the related system integration into the control system

References: { For Beam Diagnostics in general and comprehensive coverage }

- H. Koziol: " Beam Diagnostics for Accelerators", CERN/PS/92-56(BD) Dec.1992 & presented at Cern Accelerator School, $7 - 18$ Sept.1992, Finland
- "Beam Instrumentation" CERN PE -ED 001-92, { Edited by J. Bosser } Series of Lectures given by various experts in the field as part of CERN Technical Training Course Series in 1990 & 1991

Example of Control of a fast beam current transformer

Apart from the sheer proof of its existence, the most basic measurement on a beam is that of its intensity. A widely used device is the "beam transformer" (an older name, Rogowski coil, is still sometimes used) which allows one to determine the electric current that a beam constitutes or, depending on the circumstances, the electric charge contained in a burst of beam [1,2]. Figure 1 shows the principle.

Since integration makes the bunch structure disappear anyway, it will also produce an intensity signal for an unbunched beam, without any longitudinal density structure, provided that signal observation begins before injection of the beam.

Fig. 6 Integration of signal from a beam transformer.

a) Simple RC circuit. b) Inductive feedback (Hereward transformer). c) Capacitive feedback (Miller integrator).

INTEGRATING THE SECONDARY CURRENT I₂ GIVES A
VALUE PROPORTIONAL TO TOTAL CHARGE 2 IN THE PRIMARY, i.e., number of perficies in the beam.

NEED an INTEGRATOR and an ADC or an INTEGRATING ADC

Timing aspects very important (integrating charge within a specific length gate)

E.g. Gale 4 Beam. At Prod. beam
26 Gev
5 Buncles \bigcirc $1.5\times10^{13} p'$ 133.4 200-5 $\begin{array}{cccccccccccccc} \multicolumn{2}{c}{} & \$ TFAGU/2 & Gate **MARKETING** BEAM GATE. see stellte bude in the first half
of the gets $Hapn+Gr_{c}V$ $\begin{array}{c} 20 \\ k \end{array}$ $1 - 1$ β

CAMAC Model 2249W 12 Channel Analog-to-Digital Converter

· 大学大学大学

GATE INPUT

The LeCroy Model 2249W is a 12 channel, 11-bit integrating-type analog-to-digital converter. It features excellent linearity and unprecedented stability, thus allowing operation at wide gates of up to 10 uses. Thus, the 2249W is compatible with CsI and Nal crystal detectors. Its minimum gate of 30 nsec makes its use with organic scintillators and Cerenkov detectors possible in all but the highest rate conditions.

The 2249W has been optimized for dynamic range and linearity. By AC-coupling the input, 11-bit (1980 counts) operation has been achieved with ± 2 count integral linearity. This excellent linearity is maintained from the smallest signal size to signals as large as -2 V.

The test feature allows all 12 ADC's to simultaneously digitize a charge proportional to a DC level provided to a front-panel connector or patched into the CAMAC Dataway connector. In addition, the pedestals alone can be checked on-line by the same test feature by removing the CAMAC inhibit (I) during the test.

The Model 2249W offers an excellent event rate capability through the incorporation of a 2 μ sec fast clear, which permits the ADC's to begin digitizing and then be cleared upon receipt of later trigger information rather than delaying the analog signals with long cables while the trigger decision is being made. In addition, rapid readout is made possible by a convenient Q and LAM suppress feature, sidepanel adjustable between 0 and 100 counts. This feature permits an empty 2249W to be overlooked in a CAMAC readout cycle.

INTEGRATING ADC WITH THIS **GATE** GIVES DIGITAL VAINE DIRECTLY 50 ADC IN CAMAC CRATE THE CONTROL SysTEM

Copyright © May, 1984 by LeCroy Research Systems Corporation

计自动设计 建三苯 带 经的经济

· South of Web Advisors Service Contract Contract

SPECIFICATIONS
CAMAC Model 2249W
12 CHANNEL ANALOG-TO-DIGITAL CONVERTER

「その他の世界の「この世界の世界の世界の世界の世界の世界の「この世界の世界の「この世界の世界」という。

CONTRACTOR

FAST BET Crate layout

High level software access for fast beam **current transformers:** example for AAC **transfer lines**

- \cdot TYPE TRF(1, AQN,0, C)
- TYPE TRF(2,AQN,0,C)
- TYPE TRF(3,AQN,0,C)
- TYPE TRF(4,AQN,0, C)
- · TYPE TRF(5,AQN,0,C)
	- -gives BCT values in units of **E07 particles directly**

-all scaling & calib. factors inside EM

Example of Control of a d.c. beam current transformer

Basic scheme of a dc beam transformer and rectangular hysteresis of core material.

more complex and need considerations of :

- noise and ripple reduction/suppression
- DVM usage
- fast averaging over 20ms mains period
- zero line offsets /drifts caused by magnetic fields so memorization without beam and subtraction etc
- autoranging (also in fast BCT)

beam current measured at say, 4 time points

example of Circulating beam current trafo in **AC Ring**

So need 4 intensity registers 4 range registers i.e., 4 sets of 2 numbers THE CAMAC IOR MODULE provides such 2 registers, so need 4 IOR Modules

ACOL D.C. TRANSFORMER

 \mathcal{A}

 $\binom{m}{k}$

 $\ddot{\cdot}$

Borer Electronics AG

2 Inputs

TYPE 1031A

Ref: 603.3.021.4.78

DUAL 16-BIT INPUTS

- 16-BIT RE-READABLE OUTPUT
- **HANDSHAKE SYNC FOR THE INPUTS**

 $M_{\rm M}$

- **BOMA SYNCHRO FACILITY FOR** EXTERNAL BUFFERS
- RELAY ISOLATION UPON REQUEST

The Input/Output Register Type 1031A has been designed to be a very universal Camac instrument through both its concept and the number of options available. Its 16-bit format matches the 1031A to the majority of modern mini-computers while the ancillary

AL CORPACTIN/OUT REGISTER 2×16 -BIT & 1×16 -BIT

> logic ensures that it is ideal for fast data transfers. The 1031A offers a DMA synchro facility to couple external buffers and provides handshake
synchronisation for the inputs. Addi-
tionally the module is able to perform fast block transfers in the Stop
Mode (EUR4100, Section 5.4.3.3) with
a suitable Crate Controller/Interface such as the Borer Type 1531A.

> The 1031A provides two independent input channels, each of 16 bits, and an output channel also of 16 bits. An important feature of the instrument
is the ability to be able to read back the content of the register in the output channel which simplifies the software.

TYPE 1031A

A number of wire links on the p.c. hoard allows the user to choose the
logic and in/out configuration to
suit the particular application. For suit the particular application. For
example, ground or positive-true in-
puts can be accepted, as can TIL or
+24V signals. Outputs are normally
for TIL applications but can optionally be supplied as open-collectors For more industrial purposes. When
complete electrical isolation is
essential, the module can even be
delivered with relays in the inputs and/or outputs.

F(0) TA(0) Reads content of input

FUNCTIONS

COMMANDS

N Selects Station Number Suppresses LAM Clears the input/output registers $\overline{7}$ Clears LAM Disables the handshake f-f
Disables LAM
Disables the Q f-f

 $\left\{\n \begin{array}{c}\n 1 \\
8\n \end{array}\n \right\}$ Not used

GENERATION

LAM is set (if enabled) by the $\mathsf L$ external Data Ready signal

SPECIFICATIONS

 $\overline{\mathcal{M}}$

Figures quoted are for the standard model 1031A throughout. Options include
adjustment for 24V signals, for positive-true signals and relay isolation of
inputs and outputs. Further details upon request.

 $2x16$

TTL, ground-true

 \overline{z}

Data Inputs Number Level Hysteresis Over-Voltage Fan-in Data Outputs Number Level Fan-out Data Output Strobe **Level** Duration Fan-out Data Accepted Output Level Fan-out Data Ready Input Level Fan-in Sync Output Level Duration Fan-out Mating connectors

Multi-way, 52-pole (see below) Coaxial

Power Requirement

Dimensions

(B = 2nd input Word, A (1)

 \approx West A (0)

Ist. Input Word, A(Ø) 2nd. Input Word, $A(1)$ 37 Bit $\mathbf{1}$ 25 \mathbf{c} Bit Ì $\overline{\mathbf{c}}$ 26 38 Bit $\overline{2}$ $\overline{\mathbf{3}}$ 27 39 28 40 Bit $\overline{3}$ \overline{a} $\overline{\mathbf{5}}$ 29 41 Bit $\ddot{}$ Bit 5 $\boldsymbol{6}$ 30 42 Bit $\bf 6$ $\overline{7}$ 31 43
 44 Bit $\overline{7}$ 8 32 Bit $\bf{8}$ $\overline{9}$ 33 45 Bit $\overline{9}$ $\overline{10}$ 34 46 $\frac{47}{48}$ Bit 10 $\frac{1}{2}$ 35 36 **Bit 11** 12 $\overline{21}$ $\overline{17}$ **Bit 12** 13 **Bit 13** $\overline{14}$ $\overline{22}$ 18 **Bit 14** 15 23 19 24 20 **Bit 15** 16

Pin Numbers

EM access for DC BCT

• Acq. of free running channel: SET V=TRAC(1,AQN,0,C) - value given directly in E7 particles · Range reading if needed

```
SET R = TRAC(1, SCL, 0, C)
```
- where $R = 1 = 1E11$ low sensitivity

```
= 2 = 1E10 med.
```

```
=3 = 1E09 high
```
"

 ϵ

- for hardware checks, acquire direct IOR reading using property **AQND**
- For other channels:
- INJECTION = property AQN1 & SCL1
- \cdot EJECTION = ϵ **AQN3 & SCL3**

 \cdot etc..

The DC BCT gives an example of lots of sophisticated hardware and software at the local level and giving only a final result to the control system; this sort of local signal treatment/processing is also valid in some fast BCT's, e.g., current measurement per turn etc

K: pple Suppression e_1L Signal + ripple A ratatuto B \downarrow Memorized ripple (one period) **Reconstituted ripple** $C \Lambda$ $A \sim A \sim A \sim A \sim$

Reconstituted signal $(A - C)$

eg 2 Anto Ranging

D

Multiplexer A/D **Transformer** local converter intelligence To acquisition **Amplifiers**

Example of Control of Scintillator Screens

As any operator would say, "Nothing as convincing as a flash of light in the middle of an observation screen as the proof of beam coming upto there "

Typical arrangement for observation of beam position and size with a movable scintillator screen and a TV camera.

Scintillator screen made from a Cr-doped Al203 plate with imprinted graticule.

Elements to be controlled: Screen: IN & OUT {of beam} LIGHT: Switch ON/OFF & optional intensity **CAMERA: Switch ON/OFF**

FOR A LARGE NUMBER OF SCREEN STATIONS (MTV STATIONS) TO **BE** CONTROLLED, ONE NEEDS TO ECONOMIZE ON BITS NEEDED AND EASY ADDRESSING. AN OUTPUT MODULE THAT PERMITS ADDRESSING **DIRECTLY 4 BITS AT A TIME (OUT OF A** 16 BIT WORD| WAS SELECTED AS IDEAL; HENCE THE DUAL OUTPUT REGISTER MODULE(DOR).

Assign 4 Bits for SCREEN CONTROL 4 SCREENS CONTROLLED BY ONE OUTPUT WORD

Assign another set of 4 Bits for **LIGHT & CAMERA CONTROL**

4 respective LIGHTS & CAMERAS **CONTROLLED** BY ANOTHER **OUTPUT WORD**

ACQUISITION OF SCREEN STATUS DONE INDEPENDENTLY

3.1.2 Code de commande des écrans IN/OUT

ACQUISITION OF SCREEN IMPORTANT STATUS IS (destructive for beam !), while or CAMERA status LIGHT deemed not important enough... use IOR MODULE, Each So screen needs 5 STATUS bits as follows, hence 3 Screens can be acquired by one IOR 16-bit **WORD:**

USE the 2nd IOR WORD for acquisition of power supply status of different elements in the system

DUAL CUTPUT REGISTER (C)

1. General Description

The Dual Cutput Register is a single width CAMAC module which contains two identical 16 bit output registers A and B. Parallel outputs are provided on two front panel connectors. The module can service up to 8 peripherals independently because the registers can be loaded in groups of 16, 8 or 4 bits. The register content can be read back as 16 bit words.

2. Detailed Description

The registers can be loaded in groups of 16 , 8 or 4 bits depending on the CAMAC function. A group always corresponds to the least significant bits on the CAMAC Write Lines. A load (or reset) function generates strobe pulses (according to the part of the register which is loaded) available at the front panel connectors. One strobe line corresponds to each group of 4 bits, STR1 for the 4 least significant output bits, STR2 for the next 4 bits, etc.

The registers can be read as 16 bit words (for diagnostic purpose).

7. CAMAC Function Table

ANUFACTURER: FOKKER ODULE: OUT-REG ATE: 26-7-1979

-RESET BOTH REGISTERS ALL STROBES ARE GENERATED

and a complete and the common

DUAL

OUTPUT

REGISTER

STROBE A

 \otimes OUTPUT A

STROBE B ⊗ OUTPUT B

Screens And Highlevel Software

EQUIPMENT MODULE CALLED: "MTV" { example for screen no.2 } **CONTROL ACTIONS: SET MTV(2,SCRN1,0,C)=1; %.....IN OUT** $= 0$ **SET MTV(2, CAMRA,0,C)=1; %...ON** $= 0$ **OFF** SET MTV(2, LIGHT,0,C)=1; %......ON $= 0$ **OFF**

Status Acquisition:

TYPE MTV(2,SCRN1,0,C)

- gives independent status of screen

TYPE MTV(2,CAMRA,0,C) TYPE MTV(2,LIGHT,0,C)

- give status of last COMMAND registers for **Camera and Light**

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2\alpha} \frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{\alpha} \frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}$

Example of Control of Beam Position

 \overline{a} .

a) Diagonally cut "shoe-box" PU. b) Basic geometry and tapping of signals. c) A variant which allows interleaving of a horizontal and a vertical PU.

$$
x = \frac{w}{2} \frac{U_R - U_L}{U_R + U_L}
$$

UR

Frequently, the jargon terms " Δ " and " Σ " are used

$$
\Delta = \mathbf{U}\mathbf{R} - \mathbf{U}\mathbf{L}
$$
 and
$$
\Sigma = \mathbf{U}\mathbf{R} + \mathbf{U}\mathbf{L}
$$

Combination of a horizontal and a vertical PU, mounted in the vacuum chamber of the Antiproton Accumulator at CERN.

a) PU with "button" electrodes. b) Magnetic PU.

$$
x = \frac{w}{2} \frac{\Delta}{\Sigma}
$$

Number of BPM's depend on machine tunes (for each plane) and at least 4 times the Q value

for example:

LARGER THE NUMBER OF BPM stations, MULTIPLEXING becomes a MUST to reduce the electronics and a fair

COMPROMISE has to be found in MULTIPLEXING versus SPEED of RESPONSE, the latter very much dependent on **HOW OFTEN THE CLOSED ORBIT IS MEASURED AND CORRECTED - which again is dependent on the accelerator** concerned

- Hadron machines not too often except setting up etc
- Hadron storage rings even less than in pulsed synchrotrons
- electron rings can be very often with auto f.b. etc..

Each Station gives the difference (delta) and sum(sigma) signal and the Normalizer does the (delta/sigma), so the internal logic may also need multiplexing to save too many normalizers !

CRYRING BPM Example: No MUX!

Example of control of BPM's of the CERN AC Ring last small size ring built at CERN)

- Separation of planes : 32 H, 28 V **Stations**
	- One Normaliser per plane, each giving (delta/sigma)
- Control:
	- local / Computer
	- Active calibration of the electronic chain for each station

• Acquisition

- of Normaliser Output (delta/sigma) for each station

• Local Data Treatment

- Calibration Data (3 words per station)
- offset data (4 words per station)

Hence use IOR Module & Sampling ADC **FINAL HIGH LEVEL ACQUISITION DIRECTLY IN MILLIMETRES OF BEAM POSITION**

CALIBRATION ISSUES: Due to the electronics chain station per consisting of pre-amplifier, amplifier etc. etc, & unique for each station

<u>In</u> this where case active calibration takes place before every the electrodes usage, are disconnected by relays (hence using IOR Module) and **Control** sending the calibration signal to the active chain and measuring the output, i.e., Y_{c0} , Y_{c+} & Y_{c-} .

Calo is calib. signal between Sum & D- & D+ \bullet $Cal₊$ is 8 D+ **Sum** Cal-is **Sum & D-**

hence, if Y_m = Measured (Delta/Sigma) signal from any one station, then this Y_m has to be corrected by active calibration data such that the true value Y is :

 $Y = (Y_m - Y_{c0}) / ((Y_+ - Y_{c-})/2)$

Hence, this calib. correction has to be applied per station using the 3 calib. data stored in data tables

Offset issues: Due to different mechanical geometries etc and the different shapes and sizes (6 different ones <u>in l</u> **AC** Ring) governed by the vacuum pipe. Lab. test stand needed with simulation of beam etc.

In the AC Ring 60 stations' case, the lab. measurements gave non-linear relationship between actual position and the output Y_m of (delta/sigma) normaliser such that:

 $x[mm] = a_0 + a_1 Y + a_2 Y^2 + a_3 Y^3$

So 4 Coefficients to be stored per BPM station in the data table. So per **BPM station we have:**

- 4 offset coefficients
- **3 Calibration numbers**
- $-$ TOTAL 7 Numbers x 60 = 240

240 Numbers to be stored for the local data processing usage

From the Control system point of view

IOR Module for control of:

(a)manual or computer control

(b) Real measurement or calibration

such that 2 bits in IOR Register(F16A2)

 11 Calib.₀

01 Calib \div

 $10¹$ Calib-

{ STATUS OF THESE TWO CONTROLS ACTIONS: F0A1, F0A2 }

Calibration

SET PUAC(1,INITL,0,C)= 1; timing & init SET PUAC(n,CALIB,0,C)=1;

with n=1, 2, or 3 for putting calib. values in data table for all 60 BPM's;

For the 4 offset coeffs., use arrays to write in : APUAC(AV,-1,EL,symbol(OFFSET),0,CA) APUAC(AV,-1,EL,symbol(SCL1),0,CA) APUAC(AV,-1,EL,symbol(SCL2),0,CA) APUAC(AV,-1,EL,symbol(SCL3),0,CA)

ACQUISITION USING Sampling ADC \bullet SET PUAC(1,INITL,0,C)= 0; orbit measure+trig APUAC(AV,1,EL,Symbol(AQN),0,CA) where, $AV(0) = word count$ AV(1,...32) Horiz 32 positions

AV(33,60) Ver. 28 positions

 $L2C40$ Egu. Roam $RA - K - 221$ $\overline{\mathbf{1}}$ ∞ $MT - D15P$ S AllP - A BC S Anp-ADC S CAN-AC $LA \nightharpoonup A$ $27 - 255$ $U - 10R$ **OAUD** SAMPLING ADC **JOR** Sm **12 BIT** $\overline{\mathbf{3}}$ $\overline{5}$ $\overline{6}$ $\overline{\boldsymbol{\delta}}$ -16 2223 25 DATA READY FOR 1.6114 REBUNCHER ∞ τ $\pmb{\circ}$ \circ For
exclu
 $P(\text{eine}\atop{\Delta/\epsilon})$ **START** $\boldsymbol{\delta}$ \bullet $\overline{\text{TTL}}$ DAT/
REAL $T\mathsf{n}$ \bullet \bullet $\mathbf{V}_{\mathbf{Q}}$ COUVER Tok
For Control
a) Monuel / Comp.
b) Celib.or M'meut \bullet \circ $\overline{\overline{\pi}}$ SCAN OUT \mathcal{C} (\circ) **TEST OUT** (\circ) σ \bigodot AMPL $S + H$ **TEST INPUT** $\circled{6}$ INPUT \bullet

1987-10-06-19:06:48

 \mathbf{E}

Closed Orbit Correction for the AC Ring:

- Done by Orbit Measurement, Offline which gives the dipole **Analyses** corrections which are achieved $\mathbf{b} \mathbf{v}$ moving the Quadrupoles in the AC Ring - hence needs the help of surveyors to do so, to do it right !
- However, for the zero-dispersion regions and with the help of special power supplies installed on dipoles which TRIMs the current, the local orbit correction in these regions is possible.

Automatized Corrections with installed Correctors are a must in Light Sources (ELLETRA, ESRI, ... etc

ORBIT CORRECTION METHODS, TECHNIQUES, SOFTWARE etc IS A VAST SUBJECT IN ITS OWN RIGHT not dealt here

 $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\right)\frac{1}{\sqrt{2\pi}}\right)\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

Beam Diagnostics in the Control Room:

Ease of Use MOST IMPORTANT,

hence automation primordial; non-experts should be even able to use sophisticated beam observation/measurement **systems**

Examples:

- Oscilloscopes • Control \mathbf{g} other sophisticated commercial devices (Spectrum Analysers, Dynamic Signal Analysers, etc) for observation of fast, transient phenomena & so on...
- Control of INPUTS to the above devices (multiple signal sources using the same expensive instrument; so Software controlled Contacts or Switches)
- Control of Timing and Triggers to **Instruments**
- · Video Image Freezing or framegrabbing Commercial Devices (e.g., on a PC) and treatment/evaluation of exact spot, size, etc etc..
- FOR **FAST TRANSIENT PHENOMENA, NEED HIGH SAMPLE-RATE DIGITAL 'SCOPES** or EASY TO USE SYSTEM OF HIGH FREQUENCY DIGITIZERS (e.g., 8 bit FLASH ADC's ruggedly tested and established in CAMAC or VME with high enough SAMPLE **RATE** In the **CERN** λ **ANTIPROTON COMPLEX of AC &** AA Ring, beam bunches of 60 to means sampling 80 nsec at 10nsec at least (100 MHz) to sufficient observe number **of** points per extracted bunch to discern useful information.
- Need a GOOD GPIB to CAMAC or **VME Interface for all commercial** Instruments; trade-off simplicity & one-to-one mapping in 'dumb' modules versus complexity $\mathbf{\alpha}$ software complications <u>in</u> intelligent modules and issues of number of devices hooked per interface module, daisy chaining, 'talk-listen' arbitration, restrictions on device-to-interface distance etc

KineticSystems Corporation

Standardized Data Acquisition and Control Systems
\n $\begin{array}{ccc}\n \begin{array}{ccc}\n \end{array} & \begin{array} & \begin{array}{ccc}\n \end{array} & \begin{array} & \begin{array} \\ \end{array} & \begin{array} \\ \end{array}$

GENERAL DESCRIPTION

The Model 3388 is a double-width CAMAC module that provides the interface between a CAMAC system (IEEE Standard 583-1982) and the General Purpose Interface Bus (also called "GPIB" or "ASCII Bus", IEEE Standard 488). This module allows digital multimeters, counters, printers, calculators, display terminals or other devices that meet the GPIB standard to be connected to a CAMAC system. In the past, the interfacing of such instruments to CAMAC often required special modules and engineering effort on a case-by-case basis. With the 3388, up to fourteen other GPIBinterfaced instruments can be connected via the standard GPIB cables.

The Model 3388 GPIB Interface Module functions as a CONTROLLER, TALKER, and LISTENER as described in IEEE Standard 488. For example, it can cause a digital multimeter to be in the TALK mode and be in the LISTEN mode itself. The DMM would then transmit data to the 3388 to be processed by the computer associated with the CAMAC system. The computer could then cause the 3388 to be in the TALK mode and a GPIB-interfaced printer to be in the LISTEN mode. Processed data from the computer would then be printed on the printer.

The 3388 can be set to the CONTROLLER IDLE state so that it can be a TALKER or LISTENER in a system that contains another CONTROLLER (such as an intelligent terminal or a desk-top calculator).

GPIB SPECIFICATION SUMMARY

CAMAL Example.

"11 Maryknoll Drive . Lockport, IL 60441 . (815) 838 0005 . TWX 910 638 2831

 $-1-$

UME Gample

 \mathbb{R}^2

Page 10

 $\boldsymbol{\mathsf{\Gamma}}$

L

 $\mathbf{\Gamma}$

 \mathbf{I}

I

The front panel of the TSVME404 and components layout are shown in Figure 2-2.

FIGURE 2-2. TSVME404 Board Layout

- **EXAMPLES**
- **PS-COMPLEX MEASUREMENT OF BUNCH** LENGTH & SHAPE for ALL THE **MULTIFARIOUS PARTICLES THAT PS DEALS WITH** (protons, antiprotons,

electrons, positrons, oxygen, etc)

- FAST DIGITIZERS IN CAMAC & ROUTINE CONTROL ROOM USE FOR TROUBLE-SHOOTING, TOGETHER **CONTROL WITH** OF **TRIGGERS AND SWITCHES**
- CONTROLLING A **GPIB** DIGITAL100 MHz 'SCOPE **FOR HIGH LEVEL APPLICATION**

 $\chi^{(1,2)}$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\$

trigger inputs, extensive timing combinations had to be catered for and generated by a cascaded set of preset counters, connected in a precise manner and yielding \leq single-pulse output for each of the ten machine operational modes. Fig. 2 illustrates a typical injection coherent oscillation plot and correction for one of these modes while fig. 3 shows the complex timing preset connections necessary for the system.

5. New applications using fast digitizers

With the succassful use of the signal-routing modules and cascaded timing preset arrangements, it was relatively easy to extend the use of the fast digitizer modules for other applications. In the AA, the firing of the ejection kicker magnet is discernable as a fast rise- and fall-time noise on a pickup in close proximity to this kicker magnet. It is this kicker that gets fired everytime the antiprotons are extracted from the AA to the collider or LEAR via the PS.

The complexity and the sequencing necessary to arrive finally at the proton-antiproton collisions in the SPS, via all the different systems in the AA, PS, SPS and the beam transport lines, means that every diagnostic tool available is used to analyse any failure in the antiproton transfer process. The correct firing of the AA fast-ejection kicker is absolutely vital and is systematically observed at each transfer. Using the 100 MHz digitizers, this signal is digitized and stored. Fig. 4 illustrates this for a typical antiproton extraction; the circulating bunch in the AA, with a 540 ns revolution period, is clearly seen for a few turns prior to the kicker rise, extraction and the kicker fall-time noise. This measurements has been put into routine operation for the automatic extraction program in the AA. In case of timing anomalies, it is possible to locate the fault, whether it be the nonfiring of the kicker magnet (fig. 5)

Fig. 4. Last ejected bunch and kicker at AA sigma 22 pickup [with correct ejection kicker activation; reference line at 1375 nsl.

Fig. 5. Last ejected bunch and kicker at AA sigma 22 pickup [ejection kicker did not fire, bunch still circulating; reference $line$ is at 1375 ns].

Fig. 6. Bunch shape at injection into the AC, averaged over 10 shots correct injection timing with five pion bunches.

or the mistiming of the rise of the kicker pulse, bringing it too close to the circulating bunch in the previous turn.

Fig. 6 illustrates another application of the 100 MHz digitizer system. For each antiproton produced in the target and injected into the AC ring, there are around 300 negative pions injected. While the beam of 7×10^7 antiprotons is too weak to be seen on the AC beam position pickups, the pion beam is clearly visible over the first 2-3 turns before the pions decay; the AC has a revolution period of 630 ns and one can observe the fine bunch structure of the 26 GeV/c proton production beam in the secondary pion beam. On the second turn, the pion decay is already observed as a reduction in amplitude. The digitizer system is triggered continuously to carry out this observation during antiproton production. One of the main purposes of this is to ensure correct timing synchronisation for every production pulse with five pion bunches lying within the prescribed 630 ns revolution period window. If the

Fig. 7. Bunch shape at injection into the AC, averaged over 10 shots; misaligned injection: only four pion bunches on the second turn.

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

LXAMPLE:

Lest Ejected Bunch a Kicker at im signa22 Pickup

CHOHAN a a c

€

 $\overline{(\cdot)}$

 -2768

E2768

 $\sqrt{2}$

€

Fig. 5. Ejection kicker did not fire: bunch still circulating

FS fiming PN.WLP (cov) & (agn) from KTD:

 $\frac{1}{2}$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2}d\mu\left(\frac{1}{\sqrt{2\pi}}\right)\frac{d\mu}{d\mu}d\mu\left(\frac{1}{\sqrt{2\pi}}\right).$

Multishot

6 pbar FA58 Trig: beam mode Iv. Extracting Inc.

 t_{ν} sps colleg

6 pbar ring (ejection) Trig: external $(Px.058 + 7596 \text{ ns})$

In Ps Rigg before

6 proton ring (ejection)

Trig: external (Px.016+7087 ns) $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

 $\langle \hat{A} \rangle$

Horriz & Vert. CORRECTIONS

REQUIRED MEASURED **CHANGE** INJ.KICKER -3 kV (*6) 68.0 67.7 İн 39000.1 39012.3 INJ.SEPTUM ⊾ا ق. DVT6067 $\overline{\mathbf{8}}$ -120.0 **DVT6081** -119.9

The coherent oscillations of muons are measured. The pbar orbits may be somewhat different.

 $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2\alpha} \frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{\alpha} \frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\$

ł,

 $\label{eq:2.1} \mathcal{L}(\mathcal{L}^{\text{max}}_{\mathcal{L}}(\mathcal{L}^{\text{max}}_{\mathcal{L}}))\leq \mathcal{L}(\mathcal{L}^{\text{max}}_{\mathcal{L}}(\mathcal{L}^{\text{max}}_{\mathcal{L}}))$ $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2\alpha} \frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{\alpha} \frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\$

 $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2\alpha} \frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{\alpha} \frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\$ $\label{eq:1} \frac{1}{2} \sum_{i=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\$

Video Image Processing systems(for

beam profiles, shape , size, centre of gravity........)

• Frame grabbing and averaging from a Video Source

- used to enhance an image for human viewing by eliminating noise

• Convolutions on Pixels

- are a class of neighbourhood operations on pixels; effectively, they enhance particular features of an image at the expense of others; Used for Edge **Detection or Contours.**

Operations on Stored Images

- Erosion (replace a pixel by its minimum neighbour) or Dilation(replace a pixel by its maximum neighbour) to shrink or expand an object, etc....

• Analyses of treated Images

- **HISTOGRAMS produce a count of the** number of Pixels at each intensity in an image, enabling the development of lookup table enhancement algorithms, use of false Colours etc....
- PROFILES produce a count of the total intensity of each Line or Column in an image (useful for locating objects)

• Area of Interest Processing

- Zoom, Scroll etc...

Beam Diagnostics from the Accelerator Physics point of view

- For a machine physicist, beam diagnostics systems are a means to an end and not vice versa !!
- Diagnostics used to understand the accelerator and improve its performance
- Ensemble of Measurement & diagnostics Devices are used in conjunction with other controlled parameters { e.g., currents in magnets, R.F. phase correctors, beam blow-up hardware, etc } in high level automated processes or application programs for routine operation.
- For a new accelerator, a measure of its lattice parameters like beta or eta, acceptances, coupling etc and energy calibration need different techniques as well as diagnostics on a routine basis.

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

Examples:

- · Injection Coherent Oscillations Correction needs 1 pickup per plane, fast digitizing, and transverse corrections using H & V correctors and similarly a RF signal detector phase and corrector for longitudinal plane.
- Acceptance Measurement needs beam blow up system to fill the aperture & scrapers to evaluate limits of aperture ine. and calculate the acceptance
- tunes versus \bullet For energy (chromaticity) for bunched beams, one varies the RF freq. and keeps the magnets constant, measuring the tune at each freq.
- For automatic adjustment of an accelerator at its central energy (e.g. the AA), one needs to inject beam correctly, correct coh. Osc., adjust tunes by changing quad currents, verify central energy from RF freq., adjust orbits where possible with trim supplies, etc... all at the press of a single button.

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\$

 $\mathcal{L}^{\text{max}}_{\text{max}}$ and $\mathcal{L}^{\text{max}}_{\text{max}}$

 $\label{eq:2.1} \frac{1}{\|x\|^{2}}\leq \frac{$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

 $\mathcal{L}^{\text{max}}_{\text{max}}$, $\mathcal{L}^{\text{max}}_{\text{max}}$

ASPECTS OF AUTOMATION AND APPLICATIONS IN THE CERN ANTIPROTON SOURCE

V. CHOHAN and S. VAN DER MEER

PS Division, CERN, CH-1211 Geneva 23, Switzerland

The CERN antiproton source is comprised of two concentric accelerators and a production target zone. The Collector is a large-acceptance ring which acts as a buffer between the target and the Accumulator ring where the antiprotons are stored before being extracted. From the early days of the Accumulator (AA), various automatic procedures and tools have been introduced to assist in machine studies and diagnostics and to facilitate day-to-day operations for antiproton production and transfers to the CERN Collider. With the upgrade of the source in 1987 by the addition of the Collector ring (AC), the complexity of the source has at least doubled. New facilities have been added and the existing ones improved. This paper describes some of the applications, techniques and tools used for beam diagnostics, setting-up and routine operation of the antiproton source complex at CERN.

1. Introduction

The antiproton source, its upgrade and the performance of the CERN collider have been amply described elsewhere [1,2]. In 1989 considerable progress has been made towards achieving a performance close to the design specifications for the upgrade [3]. While the complexity of operations has increased substantially with the addition of the Collector ring (AC) operating in conjunction with the Accumulator (AA), the same operating crew and interaction means have been used to carry out routine operations. Relying mainly on experience gained from the operation of the single-ring AA over the previous seven years, several aspects have been streamlined, and highly automated methods and procedures have been introduced. Fig. 1 shows the schematic layout of the two rings and the production target area. The control system [4] had to be extended for the new

Fig. 1. General layout (magnetic elements only) of the antiproton accumulator complex (AAC): outer ring - Antiproton Collector (AC), inner ring - Antiproton Accumulator (AA).

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2\alpha} \frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{\alpha} \frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}$

EXAMPLE OF SINGLEBUTTON "SETTING UP

FOR AC $2A$ AA 2 applicable for different Male Coherent oscillations are

adjusted with cooldown tunes. 6 deq | Accumulation tunes restored now.

> The tunes have been adjusted to accumulation values on the stack orbit. These values are saved.

Each program: O Kequests beam

SEPARATE PROGRAMS

- Rf Synch.

2 Measures 4 adjusts TUNES 1 Measures orbits

4) Ad justs Central field, Frim

 e_{τ}

Orrects
5 Inj. Cohetent Oscillations In H, V & L Using Digitizers

O Verify Energy Matching

 $\left(\begin{array}{c} 1 \\ 0 \end{array}\right)$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

Fig. 7. Results from the AA closed-orbit measurement.

Fig. 8. Tunes versus momentum in the AA ring: $-$ Q_{hor}, --- $Q_{\rm vert}$.

 $\sqrt{2}$

 $23:43$).

Finally, automatic obstruction search programs have been implemented using controlled radial bumps in the AA and motorised displacement jacks for quadrupoles.

6. Conclusions

Of all the CERN accelerators, the AAC complex is one of the most highly automated machines, especially for all the beam-measurement, machine-experiment and setting-up procedures necessary for this complex. One of the main reasons for being able to achieve and maintain this high degree of automation is the restricted number of intermediate levels (hardware or software) between the application programs and the equipment. The AAC touch-terminals [13] operate directly from the front-end computer connected to the CAMAC serial highway, which avoids any communication overheads or problems. Similarly, CAMAC modules access the hardware directly without any front-end microprocessors sitting in the same crate, which would otherwise introduce another intermediate level. Even the sophisticated GPIB devices like the spectrum analysers are connected directly, via a simple GPIB-CAMAC interface, thus avoiding the arbitration problems or complications of an intelligent module, but at the expense of an elaborate software equipment module.

Acknowledgements

The high-level applications described here would not have been possible without the active support of many beam-instrumentation experts and the necessary lowlevel hardware and software support provided by the Controls Group. Particular mention should be made of Remy Dube and Michel Martini for all their efforts over the years in providing many sophisticated equipment software modules.

References

- [1] B. Autin et al., Proc. European Particle Accelerator Conf., Rome, 1988 (World Scientific, 1988) vol. 1, p. 392.
- [2] E. Jones, Proc. 1989 IEEE Particle Accelerator Conf., Chicago (IEEE Publishing, New York, 1989) vol. 1, p. 453.
- [3] G. Adrian et al., AAC performance, Status and Outlook, PS/AR Note 89-5 (28 June 1989).
- [4] D. Blechschmidt et al., IEEE Trans. Nucl. Sci. NS-28 (1981) 2258.
- [5] V. Chohan, Status of the Control System for the AA and AC, ACOL Note 46 (23 September 1986).
- [6] T. Eriksson, Proposal for the AA/ACOL Timing System, PS/OP Note 87-9 (14 April 1987).
- [7] R. Johnson et al., IEEE Trans. Nucl. Sci. NS-30 (1983) 2290.
- [8] V. Chohan, IEEE Trans. Nucl. Sci. NS-32 (1985) 2035.
- [9] R. Johnson et al., IEEE Trans. Nucl. Sci. NS-30 (1983) 2123.
- [10] V. Chohan, these Proceedings (Int. Conf. on Accelerator and Large Experimental Physics Control Systems,

Curent Trends in beam diagnostics controls:

processing. All the digital part was done by control specialists. This split of responsibilities had the main draw-back that a large quantity of knowledge had to be exchanged and well understood by both parties in order to develop In the past a strict demarcation line existed between the instrumentation specialists which had to cope only (or mainly) with the analog signal and maintain instruments.

the cross exchange of detailed knowledge and decouples largely the development on both sides of the software. The main drawback is the necessity for the instrumentation specialists to become control software specialists with especially good skills for real time interrupt management. This requires an important initial effort; to keep this effort within rea-The new trend is to involve more and more the instrumentation he definition of an abstract instrument which drives the data exchange, the control system and the instrument. This new approach reduces considerably sonable limits, the evolution of the environment should be gradual, specialists in the production of the dedicated instrument software allowing planned and documented.

CONTROL PROTOCOL COKPONENTS AND THEIR RELATIONSHIP

VME FFT 16

V. Chohan, [CERN PS Division] Talk on Beam Diagnostics & their Controls: CAS School,Indore ,Nov93

From left : Ted Wilson, CAS, Iyengar, Chairman, Dept Atomic Energy,India, Ramamurthy, Director of CAT, Indore

Front Row : Lyn Evans(LHC Project leader Designate), Hagel (Superconducting RF), V. Chohan (Beam Diagnostics) 2^{nd} Row: from right: F Bordry (power Converters), W. Weingarten (Superconducting RF) $3rd$ row : $1st$ on left : George Shering (controls)

